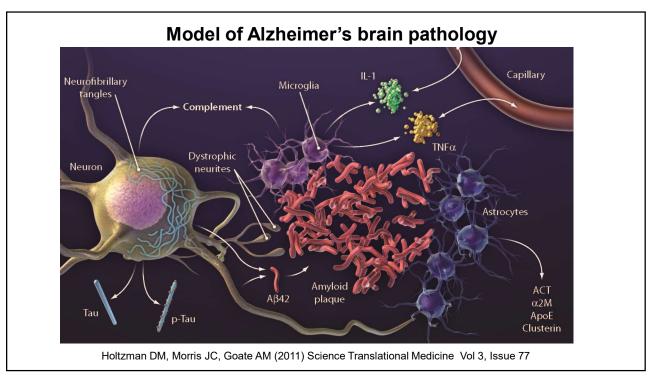
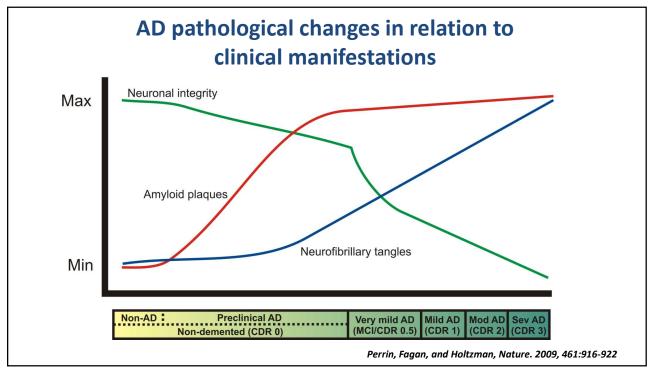
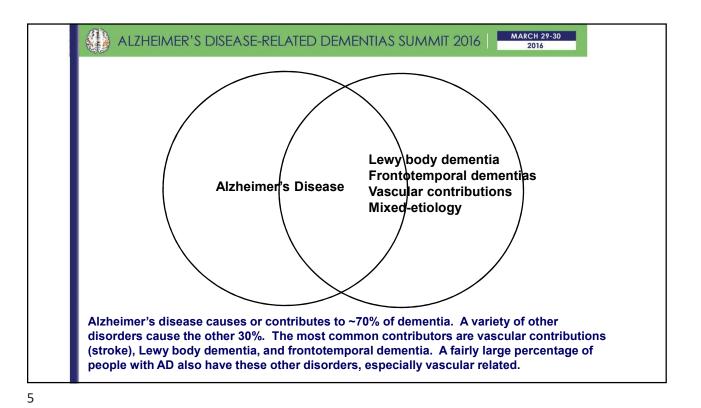
Update on blood based biomarkers for Alzheimer's Disease

David M. Holtzman, MD
Professor and Chair of Neurology
Washington University in St. Louis

1


Disclosures


Co-founder, C2N Diagnostics LLC.


Scientific advisory boards/consulting: Genentech, C2N Diagnostics, Denali, Merck, Cajal Neurosciences, Annexon

David Holtzman is an inventor on a patents licensed by Washington University to 1) C2N Diagnostics on the therapeutic use of anti-tau antibodies. This anti-tau antibody program is licensed to Abbvie and 2) Eli Lilly on the therapeutic use of an anti-amyloid- β antibody; 3) materials and methods related to assessing A β and tau in plasma blood tests.

The Holtzman lab receives research grants from the National Institutes of Health, Cure Alzheimer's Fund, Tau Consortium, the JPB Foundation, Good Ventures, Bright Focus, and C2N Diagnostics.

What is a biomarker?

World Health Organization:

Almost any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical, or biological. The measured response may be functional and physiological, biochemical at the cellular level, or a molecular interaction.

Examples in medicine of biomarkers include: pulse, blood pressure, LDL and HDL cholesterol

In the case of Alzheimer's disease (AD), the biomarkers to be discussed today are those that objectively mark aspects of AD pathology in the brain: amyloid plaques, neuronal response to amyloid, tau tangles, and neurodegeneration (brain injury/cell death).

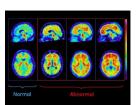
How are AD biomarkers used?

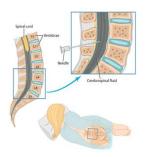
- <u>Research</u>- to understand underlying causes of AD pathophysiology
- · Clinical trials
 - Treatment trials- To confirm that AD is the likely cause of cognitive impairment
 - · Prevention trials- To identify cognitively normal participants with AD brain pathology
 - Target engagement- To confirm that drugs are affecting AD-related targets

Clinic

- Currently, to evaluate for AD brain pathology in patients where the clinician suspects AD as the cause of cognitive symptoms but is uncertain
- In the future, when we have disease-modifying therapies (e.g. pills, antibody injections, other interventions), a test confirming underlying AD pathology will be likely be required to start treatment

7


Limitations to imaging- and CSF-based AD tests


Amyloid PET:

- Expensive (~\$5,000/scan) and not covered by insurance
- Limited availability (only major medical centers)
- Small amount of radiation

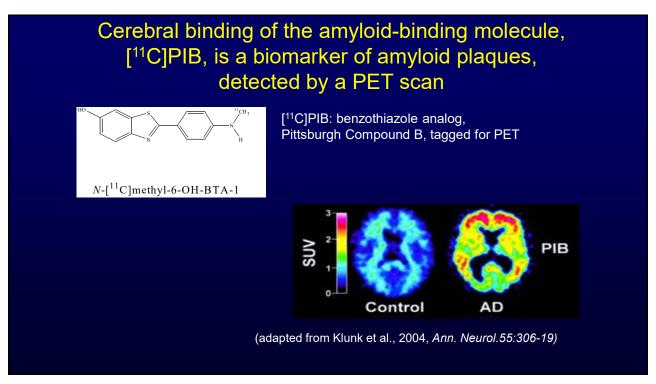
CSF biomarkers:

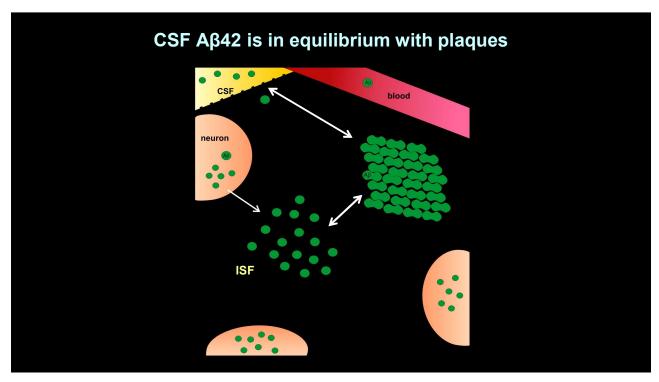
- Lumbar puncture may be perceived as invasive
- Small but real risks of headache or back soreness
- Somewhat expensive (~\$750 or more just for Aβ42, Aβ40, tau, ptau181, depending on company); requires time from physician/staff that may not be adequately compensated
- Not convenient

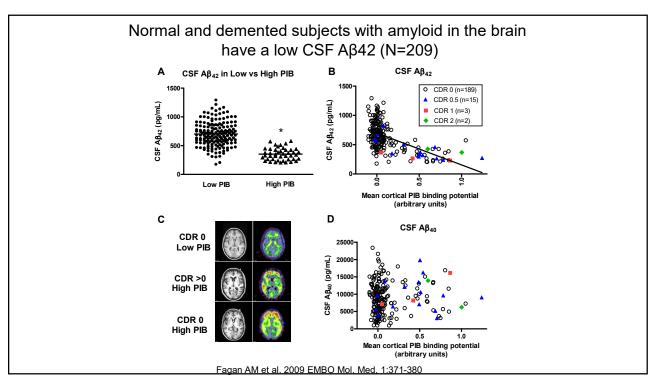
Advantages of a blood test

· Practical advantages

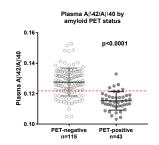
- · Individuals are comfortable having blood drawn
- Blood can be drawn almost anywhere and samples can be shipped to a lab for testing
- Lower costs may be possible (e.g. <\$1,300)


Scientific advantages


- · Multiple proteins can be measured with a single blood sample
- Results are a number, rather than a more subjective "read," facilitating interpretation of results
- Studies could measure AD biomarkers without burden of imaging/lumbar puncture

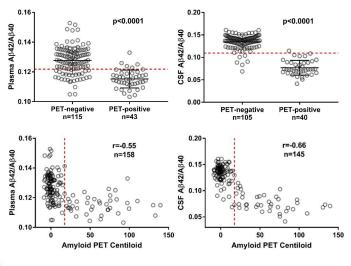

Potential impact on clinical trials and the clinic

- Participants in clinical trials could be screened/recruited more rapidly and costeffectively, speeding development of effective treatments
- Currently, <~5% of dementia patients are evaluated with AD biomarkers—if an accurate blood test is developed, this could increase to ~80%
- More widespread use of blood-based biomarkers could potentially lead to earlier and more accurate diagnosis of AD dementia

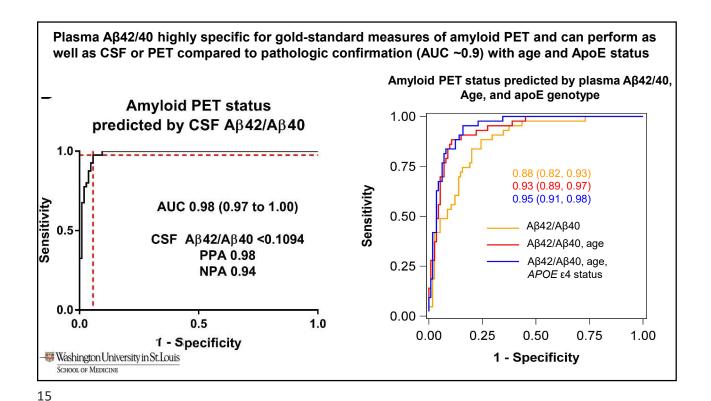


Plasma $A\beta 42/A\beta 40 = amyloid PET$?

- Normalizing A β 42 to A β 40 likely accounts for some pre-analytical variation and individual differences in A β production and diurnal variation; A β 42/A β 40 is a measure of A β 42 sequestration into plaques just like in CSF.
- The difference between abnormal and normal is small (~10%), so a precise assay is required
- Multiple groups have reported that high precision assays for A β 42/A β 40 using mass spec are highly concordant with amyloid PET¹⁻⁴, especially after consideration of *APOE* ϵ 4 genotype^{3,4}
- "False positive" plasma Aβ42/Aβ40 results predict conversion to amyloid PET positive; plasma may be positive before amyloid PET⁴



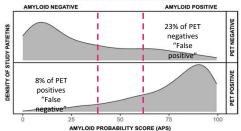
¹Ovod A&D 2017; ²Nakamura Nature 2018; ³Verberk Ann Neurol 2018


⁴Schindler S... Bateman R. Neurology 2019

13

Plasma and CSF $A\beta42/40$ identifies is useful in identifying those who are have amyloid in brain as see via PET scan

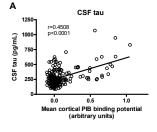
₩ashington University in St.Louis
School of Medicine

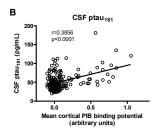


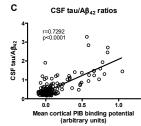
В Baseline plasma and CSF Baseline plasma Aβ42/Aβ40 by last amyloid PET status Baseline CSF Aβ42/Aβ40 by last amyloid PET status Aβ42/Aβ40 predict amyloid p<0.05 p<0.0001 p<0.0001 — PET status conversion. Individuals who were amyloid PET-negative at baseline and converted to amyloid PET-C D positive over the follow-up period had lower baseline Fraction remaining amyloid PET-negative -raction remainin nyloid PET-negat plasma AB42/AB40 than HR=12 HR=5 individuals who remained Plasma Aβ42/Aβ40≥0.1218 CSF AB42/AB40≥0.1094 amyloid PET-negative Plasma Ab42/Ab40<0.1218 CSF AB42/AB40<0.1094 Plasma to PET interval (years) CSF to PET interval (years)

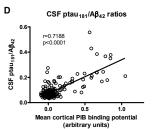
The first blood test for detection of amyloidosis in individuals with cognitive impairment is now available for clinical use

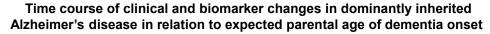
PrecivityAD test from C2N Diagnostics (IPMS plasma Aβ42/Aβ40 + APOE genotype




https://precivityad.com


More AD blood tests will likely follow soon (e.g. pTau181, pTau217, NfL)


17



Fagan AM et al. 2009 EMBO Mol. Med, 1:371-380

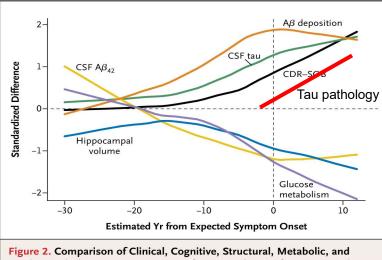
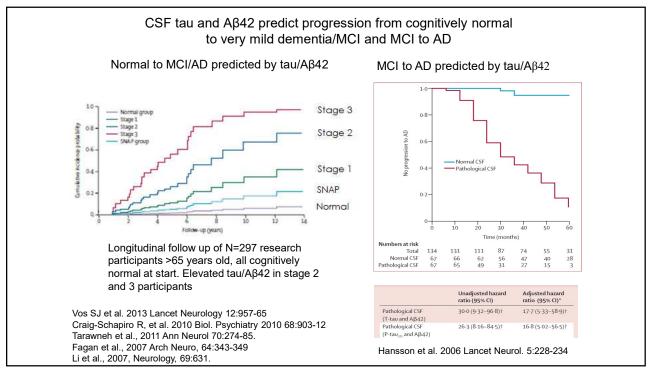
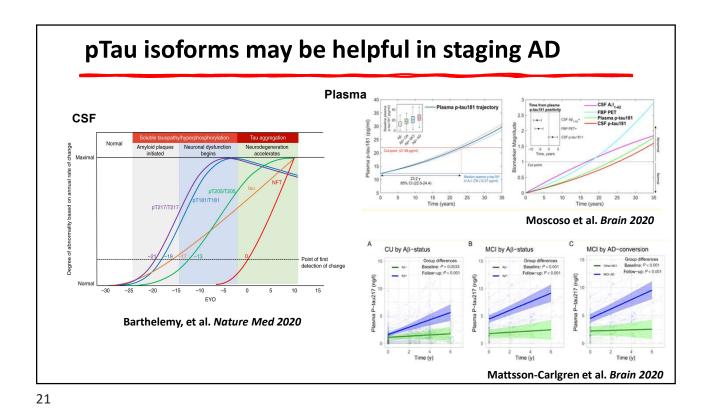
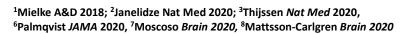
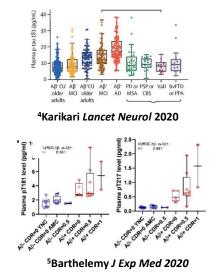




Figure 2. Comparison of Clinical, Cognitive, Structural, Metabolic, and Biochemical Changes as a Function of Estimated Years from Expected Symptom Onset.

Bateman R et al. from the DIAN Network 2012 NEJM 30;367(9):795-804

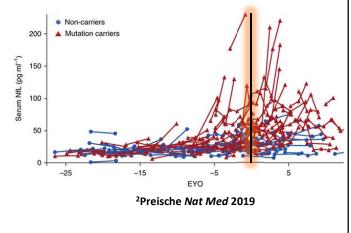

19



Plasma pTau—better correspondence with symptoms

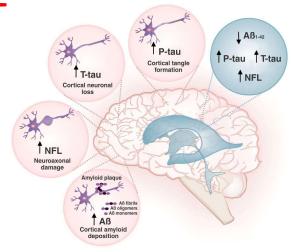
- Plasma pTau181¹⁻⁷ and pTau217^{5,6,8}
 - Good concordance with both amyloid PET and tau PET but these ARE NOT markers of tau tangles – they are markers of amyloid induced effects on neurons
 - Can help differentiate Alzheimer disease from other neurological disorders
 - Predicts cognitive decline (pTau181)
 - · Increases in later stages of the disease

Plasma pTau – increases over time predicts brain atrophy but only in amyloid positive individuals



Moscoso A et al. JAMA Neurology 2021: doi:10.1001/jamaneurol.2020.4986

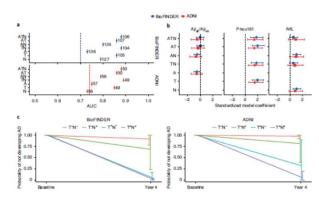
23


Plasma/serum NfL—non-specific neuroaxonal damage

- Plasma NfL is correlated with dementia and brain atrophy¹
- Serum NfL increases fastest in individuals who are transitioning from cognitively normal to symptomatic²
- Faster increases in plasma NfL predict smaller brain volume and worse cognitive performance³

¹Mattsson *JAMA Neurol* 2017; ³Mattson *JAMA Neurol* 2019 **Promising blood analytes**

- 1. Αβ42/Αβ40
 - Becomes positive very early
 - Identified brain amyloidosis
- 2. Phosphorylated tau isoforms (including tau phosphorylated at T181, T217)
 - Increases during preclinical AD
 - Increases with increasing brain amyloidosis
- 3. Neurofilament light protein (NfL)
 - Not-specific for specific disease
 - But, tells one that there is ongoing neuronal damage

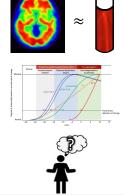


Radanovic BrJPsy 2019

25

Using plasma biomarkers in combination

- Future AD blood tests are likely to use a combination of biomarkers, rather than a single analyte, to predict risk for AD dementia
- Models including individual factors (age, sex, APOE genotype, race, etc., rather than a single cut-off value for positive/negative, are likely to be more accurate)



Cullen Nature Aging 2020

Overall conclusions

- Blood-based biomarkers provide similar information as amyloid PET and CSF biomarkers, but because of practical advantages, may enable broader use of AD biomarker testing
- When measured with a precise assay, plasma Aβ42/Aβ40 is highly concordant with amyloid PET status, especially after consideration of APOE ε4 status
- Plasma pTau isoforms are highly concordant with both amyloid PET status and symptomatic status and could potentially allow for staging of AD
- Widespread use of blood-based biomarkers in clinical diagnosis should lead to earlier and more accurate diagnosis of cognitive impairment due to AD. This will be helpful for clinical trials and hopefully identify those for specific treatment.
- In addition, blood-based biomarkers can identify those with preclinical AD that can targeted for prevention/prevention trials.

Thanks to Randall Bateman and Suzanne Schindler at Washington University!

